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Abstract. Numerical simulations of ion induced electron emission from solids mostly use the first order
Born approximation within the dielectric formalism to describe valence electron excitation. As a result,
the yield of emitted electrons is found to scale with the square of the projectile charge QP in contrast
to experimental findings obtained with carbon targets [1]. Since similar deviations from Q2

P scaling were
observed for the electronic stopping power, at least a part of this deviation must be related to primary
ion-electron interaction, for which an alternative description needs to be developed. We thus present
here a distorted wave approach for the modelling of primary interaction, which can be expected to give
better results in view of its success in describing ion-atom collisions at large impact velocity. Keeping the
same description of the electron transport through the target, we show that both the electron yield and
the stopping power ratios (with respect to the same quantities for C6+), as a function of the projectile
charge, are better reproduced by this alternative approach. We show that low energy electron excitation is
responsible for the deviation from the Q2

P scaling. We also analyse the effect of the transport on the primary
electrons. This distorted wave approach successfully explains the shape of the ratio of energy differential
spectra for two different QP obtained in earlier experiment for Al and C. Furthermore, we predict a different
behaviour of the forward and backward electron emission with respect to QP in qualitative agreement with
experimental results.

PACS. 79.20.Ap Theory of impact phenomena; numerical simulation – 34.50.Bw Energy loss
and stopping power – 34.50.Dy Interactions of atoms and molecules with surfaces; photon and electron
emission; neutralization of ions

1 Introduction

Since the pioneering work of Bohr [2] and Lindhard [3], ion
penetration in solids received a lot of interest. The case of
swift heavy ions covers a wide area of physical processes.
It ranges from projectile transport through solids [4] with
particular signature of solid state effects on projectile pop-
ulation to target modifications like defect creation [5] or
target particle ejection into the vacuum [6]. Among all of
these phenomena, electron emission plays a central role
since it reflects the projectile energy loss via electronic ex-
citation and is therefore a precursor for all effects taking
place at larger time scale.

The case of swift light ions impinging on metals re-
ceived a particular interest both experimentally [7] and
theoretically as a prototype which exhibits most of the
key features of electron emission [8,9]. From these studies,
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we learn that electron emission is a rather complex phe-
nomenon, which can be regarded as a two step process.
The first step, often called primary ionisation, consists in
the population of target excited electronic states induced
by the projectile. It takes place at very short times and is
obviously intimately related to projectile energy loss. The
second step consists in the transport of the electrons in ex-
cited states of the target and their emission into vacuum.
During the course of their transport, the primaries can
generate secondary electrons in a cascade process increas-
ing the total number of excited electrons [10]. A direct con-
sequence of the transport is that a lot of details about the
primary ion-solid interaction are lost. In some cases, this
interaction can be traced back (e.g. for the convoy, Auger
or binary encounter electron peaks), while the dominant
low-energy electron contribution is strongly modified. The
whole process has been modelled by Monte Carlo simula-
tion and can be regarded as a numerical resolution of a
master phase space equation governing the electron emis-
sion process [11,12].
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Studies with swift heavy ions are scarce. Indeed, the
complexity of the phenomena increases since heavy ions
can induce large perturbations in the target. The few
proposed models seem not consistent with recent experi-
mental data obtained with highly charged ions [1,13,14].
In particular: (i) the backward yield (γB) over stopping
power (Se) ratio Λ depends on the projectile charge QP [1];
(ii) the forward over backward yield ratio γF /γB increases
with the projectile charge [14]; (iii) the ratio of two spectra
recorded at the same velocity vP for different QP shows
that the high energy part follows more or less a Q2

P law
while the low energy part somewhat saturates [15,16]; and
(iv) this ratio exhibits a puzzling step-like feature at the
Auger threshold of the core electrons [15–17]. All of this
experimental facts deserve to be considered in a unified
theoretical approach. It is the aim of this paper to investi-
gate theoretically the behaviour of electron emission when
the projectile charge increases from 1 to 39 at a fixed pro-
jectile velocity vP = 19 a.u. (an energy corresponding to
9.2 MeV/u). For this system, a complete set of experimen-
tal data exists [1].

Our strategy can be summarised as follows. We shall
concentrate on primary electron production and show that
the standard perturbation theory, known as linear re-
sponse theory, cannot reproduce the projectile charge de-
pendence of the backward emission yield ratio obtained
by comparison with the C6+ case. A similar breakdown
of this theory to reproduce the stopping power ratio is
a clear evidence that it does not accurately describe the
primary excitation. Furthermore, a phenomenological ap-
proach recently successfully correlated the evolutions of
both electron yield and stopping power with the charge
of the projectile [1]. We therefore investigate here an al-
ternative modelling of the primary process, which allows
to account for high charge effects. For both models, linear
and alternative, we use the same description of the trans-
port to clearly point out the differences in modelling of
the primary process. Our description of the transport is
briefly presented in Section 2 without going into the very
details of the model since our aim is to focus on primary
effects. The modelling of primary excitation is presented
in Section 3. In particular Section 3.1 recalls the important
features of linear response theory and Section 3.2 presents
our alternative method to account for high charge. Sec-
tion 4 presents our results and provides a complete com-
parison of both models with each other and with available
experimental data. We finally give some concluding re-
marks in Section 5. While not otherwise stated, the ion
energy is 9.2 MeV/u, the target is an amorphous carbon
foil and atomic units are used.

2 Monte Carlo simulation of electron
transport

2.1 Master phase space equation

We shall work in the framework of statistical physics and
we consider the phase space coordinates as stochastic vari-
ables described by a density probability function. The dy-
namical evolution of this probability function is generally

given by the Liouville equation of the whole system [18].
Following a large number of authors in this field [8,9,19],
we rather describe our system with the help of a phe-
nomenological master equation, which we can derive under
the following assumptions considering the electron emis-
sion as a two-step process. In a first step, the interac-
tion between the projectile ion and the target liberates
electrons above the Fermi energy of the target and in a
second step, the excited electrons diffuse in a potential
representing the solid. During their diffusion the excited
electrons can ionise other target electrons giving rise to
a cascade reaction. In most of the previous models [9,10,
20], the interaction of the electrons with the surface bar-
rier of the target is considered as a third step. In our case,
this interaction is already taken into account by consid-
ering that the electrons move in the target potential [11,
12]. We will consider the target as an inexhaustible source
of electrons, i.e. we will neglect all the modifications of
the electronic system due to the excitation of electrons
and thus we consider that the projectile and the cascad-
ing electrons collide with a target in its ground state. This
approximation is expected to be valid as long as the prob-
ability of the interaction between two excited electrons is
small during transport. We assume that the transport of
the electrons results from a series of stochastic collisions,
and that it can be described classically on a mesoscopic
scale (i.e. its position r and its momentum p are simulta-
neously well defined), whereas the collisions follow quan-
tum mechanical rules. The collisions of the cascading elec-
trons take place inside the target, which is delimited by
a macroscopic potential V0(r). This potential represents
the attractive background potential of the solid experi-
enced by a test-electron. In our model we define V0(r) as
the average potential of the solid in its ground state. It is
therefore uniform inside the solid with V0(r) = V0. It van-
ishes outside the solid, i.e. limr→+∞ V0(r) = 0. Our only
assumption about the shape of V0(r) is that it vanishes
smoothly on a microscopic scale. In such a case the trans-
mission through the surface barrier is well reproduced by
a classical calculation [12].

Since the projectile ions considered in this work are
heavy (ZP > 6) and fast (vP > v1s, with v1s the target 1s
orbital velocity), they can be assumed to propagate along
an unperturbed straight line with a constant velocity vP .
Moreover, we will neglect any projectile charge changing
from target electron capture and projectile electron loss.
This is a reasonable assumption for the projectiles consid-
ered in this work for which the incident charge is chosen
as close as possible to the equilibrium charge QP , which is
itself very close to the atomic number ZP [1]. Therefore,
the phase space distribution function may be integrated
over the projectile coordinates and the projectile appears
only as a source term in the following master equation:

∂f

∂t
+ p · ∇rf − ∇rV0∇pf =

− k(p)f +
∫

dp′K(p,p′)f(p′) + S(p, t) (1)
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where f(r,p, t) is the number of excited electrons at the
phase space coordinate x = (r,p) at time t. Here, k(p)
is the probability per unit of time that an electron at p
changes its linear momentum due to collisions, K(p,p′)
is the probability per unit of time that an electron with
momentum p′ produces an electron with momentum p ei-
ther by its own deflection and energy loss or by inducing
secondary electrons. S(p, t) denotes the number of elec-
trons liberated per unit of time with a momentum p at
time t, due to the interaction between the projectile and
the target. The left-hand side contains the drift term and,
in particular, the electron interaction with the surface.
The above equation holds for the entire phase space and
the collision kernels k(p) and K(p,p′) vanish outside the
solid.

From the distribution function f(r,p, t), we obtain:

d3γ

dp3
= lim

t→+∞

∫
out

drf(r,p, t) (2)

where d3γ/dp3 is the triply differential yield (with respect
to the three momentum components) and the integration
runs over the exterior of the target slab under consid-
eration. Doubly differential, singly differential and total
yields are then obtained by successive integration. This
expression is the outgoing flux of electrons and it can be
reduced either to the backward or to the forward outgoing
flux to get the forward and backward yields, respectively.
A schematic representation of the interaction geometry
is depicted in Figure 1a. The mathematical transforma-
tion that relates the solution of equation (1) to the source
term S is linear. The linearity comes from our hypothe-
sis of a small perturbation, which allows one to separate
transport and source terms. Hence, any scaling laws about
S apply as well on the electron yields.

The master equation may be handled in several
ways. A well-suited choice is a Monte Carlo (MC)
simulation [10,11,21], which does not require any fur-
ther assumptions and gives the solution of the above
7-dimensional linear master equation, in the limit of in-
finite sampling [12]. In the simulation, the particles are
followed from the entrance of the ion in the solid until the
electrons leave the solid or until their energy becomes so
small that they cannot exit the solid potential anymore
(i.e. a negative energy with respect to vacuum level). The
interaction times, or the equivalent electronic mean free
paths, are sampled using a Poisson law according to our
model, for which: (i) the stochastic forces deriving from
the collision kernels k(p) and K(p,p′) depend on the elec-
tron momentum, but do not depend on the position of
the electron inside the target and (ii) the excited elec-
trons evolve in an uniform potential inside the target and
therefore do not experience any acceleration which could
change their mean free paths [12].

We consider a target of amorphous carbon with an
atomic density of 0.0148 a.u. (2 g/cm3). Energies are given
with respect to the vacuum. The position of the Fermi
level is obtained from the work function of graphite taken
at 0.173 a.u. (4.7 eV) below the vacuum level [22]. The
potential inside the target is taken to be V0 = −0.700 a.u.

(a)

(b)

Fig. 1. (a) Schematic representation of the beam foil interac-
tion. Note that the backward hemisphere corresponds to the
entrance surface for the ion. (b) Schematic representation of
the energy levels for both models. The shadowed area corre-
sponds to the valence band of the solid. V0 is the potential
experienced by the excited electrons during transport.

(19 eV), and gives an overall agreement between exper-
iment and theory [11]. Our modelling of the solid is de-
picted schematically in Figure 1b.

2.2 Electron kernels

We shall present in this section the kernels we use in
our calculations, for which physical justifications were dis-
cussed elsewhere [9–12,20,23]. These kernels are known
to give satisfactory results for electron transport above a
few keV and they are commonly used for secondary elec-
tron emission studies [9–12,20,23]. We first assume that
our kernel is separable into three parts, corresponding to:
(i) elastic collisions with target atoms, (ii) inelastic col-
lisions with 1s core electrons of the carbon atoms and
(iii) inelastic collisions with the valence band electrons.

For the elastic collisions we calculate the corresponding
kernel Kel from an effective potential constructed from the
electronic density of a carbon atom [11,24] and a suitable
exchange potential [25]. It takes into account the presence
of the nearest neighbours and is spherically averaged for
the sake of simplicity [11]. Since we are interested in low-
energy as well as high-energy electrons, we used the phase
shift analysis [26] to generate the values of Kel(q), where q
is the momentum exchange in an elastic collision. The cor-
responding interaction does not give rise to any electron
multiplication.
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The interaction with the target core electrons is
treated like an electron-atom interaction. The solid state
effect accounted for is the excitation threshold SK =
10.44 a.u. (284 eV) that corresponds to the solid excita-
tion threshold rather than to the atom ionisation thresh-
old. For electron transport, 1s-electron excitation does
not need to be described with high precision and thus,
we shall adopt a simple formulation of K1s deduced from
Gryzinski’s formulae for atom ionisation cross-section [27].
We also account for the Auger process, which represents
99.7% of the electron-hole recombination process for the
1s-shell of carbon. Both, the “filling hole” electron and
the Auger electron initial energies are uniformly sampled
between the bottom and the top of the valence band, and
the Auger electron velocity distribution is considered to
be isotropic. Finally, the net result of the interaction with
1s-electrons is to add two more electrons to the cascade.

For the transport process, the interaction with the va-
lence band electrons of the target largely dominates the
interaction with the core electrons, due mainly to two
reasons. First, it is easier to ionise a valence electron,
for which the binding energy is of the order of 0.5 a.u.
(13.6 eV), than a core electron for which the binding en-
ergy is of around 10 a.u. Second, even at the earliest time
of its development, the cascade is mostly constituted of
low energy electrons (lower than 50 eV) for which it is
energetically impossible to ionise 1s electrons. For a solid
target, the electron interaction with valence electrons dif-
fers from electron-atom collisions because of collective
effects such as plasmon excitation [8,28]. Therefore, to
describe this interaction we use the dielectric response
theory, which takes into account the collective effects. We
shall give more details about this process in Section 3.1.
Since we assume that electron-hole recombination in va-
lence band does not give rise to appreciable changes in the
cascading process (we do not include them in our simula-
tion), each interaction with the valence electrons increases
by one the number of cascading electrons. It is important
to note that the absolute magnitude of the electron yield is
sensitive to the choice of the dielectric response function.
The results presented in this paper were all obtained with
the response function as given by Ashley [29]. We have
checked that using another choice for the response func-
tion leaves unchanged the ratios presented in Section 4.

3 Source terms

From now on, we shall assume that S(p, t) is constant
in time. The generalisation to a time dependent source
term is straightforward. As for the electron kernels, it is
customary to split the source term S(p) into a valence
contribution Sval(p) and the inner-shell contributions. In
the case of carbon, the inner shells reduces to the 1s shell,
so that we have:

S(p) = Sval(p) + S1s(p), (3)

where S1s(p) stands for the 1s contribution. We will com-
pare two approximations for Sval, namely the Linear

Response Theory (LRT) and the Continuum Distorted
(CDW) Wave Eikonal Initial State (EIS) approximation,
denoted by SLRT

val and SCDW
val , respectively. In the following

we will use the CDW-EIS formalism presented below for
1s interaction, except when otherwise stated. The model
which combines the linear response theory with the CDW-
EIS formalism for 1s interaction will be referred to as the
“dielectric model”.

3.1 Linear response theory for valence electrons

The valence electrons of a solid sample can be regarded
as an electron gas [8–10,28]. Its interaction with an exter-
nal charge has been studied by numerous authors [30–32]
and can be characterised by a response function of the
target electrons in the limit of the first-order Born ap-
proximation. The response function, which is an intrinsic
property of the material, determines the characteristic en-
ergy and momentum loss spectra of the projectile, or in
an equivalent way the momentum and energy gain for the
valence electrons. In particular, it accounts for collective
effects and their characteristic features observed in energy
loss spectra [30]. However, it gives a priori no information
how such an energy and momentum gain, being essentially
a collective effect, could generate single electron excita-
tions as it is assumed in most theories about secondary
electrons emission [8–10,22,28]. Following Ritchie [33], we
will assume that the excitation of the medium generates a
transient wake potential, which can be decomposed into a
sum of elementary excitations with well-defined momen-
tum and frequency. Each elementary excitation is then
a sum, over all the target electrons, of mono-electronic
operators and each of these mono-electronic operators in-
duces mono-electronic transitions that can be assimilated
to a statistical set of single electron-hole pair excitations
in the medium [28,33].

To be consistent, the whole time evolution of the tar-
get electrons should be followed, but this would lead to
very complicated calculations. For the sake of simplicity,
we shall therefore assume that the wake field is applied to
a material in its ground state. In other words, each tar-
get electron is regarded as a test charge, which feels both
the external unscreened field of the incident particle and
the screening field corresponding to the polarisation of
the surrounding target atoms. We also assume that the fi-
nal electronic state can be approximated by a plane wave
to make the calculation easier. Then, for a bare ion of
charge QP and velocity vP , the following expressions are
obtained [11,12,33]:

K(q, ω) =
2Q2

P

πvP q
Im

[−ε−1(q, ω)
]

(4)

Sq,ω(k) = 2π |Vq,ω |2
∫

dωiρS(ωk)ρS(ωi)

× χωi(k − q)δ(ωi − ωk + ω) (5)∫
d3kSq,ω(k) = K(q, ω) (6)
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where q and ω are the momentum and energy loss respec-
tively, k and ωk are the momentum and energy of the
ejected electron respectively, and ωi its energy before the
collision. Vq,ω is the screened Coulomb potential describ-
ing the interaction between the projectile and the target
electron, which is proportional to Q2

P . Within our approx-
imation, all the information is provided by the response
function ε−1(q, ω) (which is adjusted to experimental re-
sults), the energy density of state ρS and the initial density
of state in momentum space χωi (which is defined as the
momentum distribution averaged over all the electronic
states of energy ωi). Further, we assume that χωi can also
be adjusted to experimental results [11,12]. The connec-
tion with equation (3) is simply obtained by:

SLRT
val (k) =

∫
dω

∫
dqSq,ω(k). (7)

We emphasize that the expression (5) for the source term
is strictly proportional to Q2

P via Vq,ω . For our purpose,
this is the main result of linear response approach.

3.2 CDW-EIS approximation for core and valence
electrons

The ideal “ansatz” for the source term would be to de-
velop a full non-linear response theory for a solid. If this
is not possible, the entire solid may be represented by a
reduced size cluster, large enough to keep track of con-
densed matter effects. Although such kind of calculations
are now available for some simple cases [34–36], it seems
to be a very cumbersome task to perform explicitly the
calculation for the large-velocity projectile considered in
this work (and hence large velocity ejected electrons). On
the other hand, ion-atom collision theories are well devel-
oped in this velocity regime and we shall model the solid
with the help of an effective-atom as it is described in the
following. Indeed, large deviations from Q2

P -scaling have
been observed for ionisation in ion-atom collisions at large
impact velocity [37], in particular for helium targets [38].
This so-called saturation effect has been also observed for
excitation in a velocity regime close to 19 a.u. [39]. The de-
viation from the Q2

P -scaling is attributed to a two-centre
effect [40], which is a signature that the electron is ejected
in the combined fields of the projectile and target. For
relatively large projectile charge QP , such that the ra-
tio QP /vP no longer is small compared to unity, this be-
haviour is quite well reproduced by the CDW-EIS (Con-
tinuum Distorted Wave-Eikonal Initial State) theoretical
approximation [41]. Our proposal is to search if the two-
centre effect, which takes place in ion-atom collisions, is
also present in ion-solid collisions. In the latter case, we
shall call this saturation effect a non-linear effect, to stress
that our approach goes beyond the linear theory based on
the dielectric formalism. Moreover, one of the character-
istic features of the two-centre effect, namely the convoy
electron emission at 0◦, has been also observed for ion-
solid interactions [42].

In our case, the ratio QP /vP varies from a value of
2 × 10−3 for a proton (weak perturbation) up to a value

of 2 for Mo39+ (strong perturbation) at 9.2 MeV/u. Like
the linear response theory presented above, the CDW-EIS
approximation is a perturbation theory, but where the full
incoming ion potential is no longer taken as the perturba-
tion [40]. In fact, the perturbation is taken in the kinetic
energy, and the asymptotic Coulombic tail of the ion po-
tential is directly included in the representation of the
initial electron state, by choosing a multiplicative distor-
tion of the initial bound wave function which corresponds
to an eikonal approximation (Eikonal Initial State: EIS)
of the electron-projectile continuum. This EIS distortion
allows to obtain a normalised initial distorted wave func-
tion, in contrast to the case of using a more complete
electron-projectile Coulomb continuum factor [43]. The
target electrons are treated independently according to
the frozen core approximation [41]. It is worth noting here
that we account for multiple process [44] within the inde-
pendent electron approximation. In particular, the calcu-
lated cross-sections correspond to the total number of elec-
trons ejected from a target atom per unit of incident flux.
It fully accounts for multiple ionisation and is therefore
identical to the net ionisation cross-section [37,45].

In our CDW-EIS calculations the undistorted initial
bound state is described by a multiple-zeta Rothaan
Hartree Fock wave function for carbon [24]. We accounted
also for solid state effects by considering a sp2 hybridised
initial state [46]. We included one π and three σ states
with an energy corresponding to the band median energy
(−0.291 a.u. and −0.585 a.u., respectively). The resulting
absolute total yield and stopping power for protons and
Mo39+ do not present any significant improvement with
regard to the non-hybridised model of an isolated atom for
which we have two 2s and two 2p electrons with energy
−0.740 a.u. and −0.310 a.u., respectively. In both cases,
the total average energies are very close (−0.512 a.u. for
hybridised model and −0.525 a.u. for the other one). We
conclude that hybridisation plays a secondary role in our
case. The final state is obtained as the double product
of a plane wave and two continuum factors (Continuum
Distorted Wave State: CDW), one centred at the target
and corresponding to an effective potential Z∗

T /x, and an-
other centred at the bare projectile and corresponding to a
potential QP /s (x and s being the electron-target nucleus
and electron-projectile position vectors, respectively). We
used for Z∗

T the definition proposed by Belkic et al. [47],
where Z∗

i =
√

(−2uin2
i ) for a given i-level, with bind-

ing energy ui and principal quantum number ni. For the
2s and 2p levels, we have Z∗

2s = 2.44 and Z∗
2p = 1.57,

respectively. We have verified that this choice of effec-
tive charges gives the best representation of the stopping
power. The effective atom model is schematically depicted
in Figure 1b.

With respect to the linear response theory, the CDW-
EIS calculation, which neglects solid state collective ef-
fects in the primary collision, is no longer proportional
to Q2

P . It might be therefore able to reproduce the experi-
mental observation, as it does for ion-He collisions. An ex-
plicit calculation of collective effects beyond the first Born
perturbation theory is still lacking and it would be very



130 The European Physical Journal D

cumbersome. Moreover the influence of this primary col-
lective effects on electron emission (in particular on an
integrated quantities such as the total yield) is difficult
to estimate precisely, because the transport completely
swamps out the fine detail of the primary ion-target in-
teraction. We emphasize that plasmon excitation is still
present in transport, and collective effects are therefore
accounted for in their main contribution to electron emis-
sion.

The cross-section for liberating an electron with mo-
mentum k has to be calculated in a consistent way with
the electron transport description [12]. For an isotropic
medium, and considering that the electron energy must
be the same in the solid and in the atom, the number of
electron emitted per unit of time becomes:

SCDW
val (k) = vP ρAT

∑
i=2s,2p

∂3σi

∂k3

= vP ρAT

∑
i=2s,2p

∂3σi

∂k′3

√
1 + 2

V0 − US

k2
, (8)

with

k2

2
+ V0 =

k′2

2
+ US (9)

where k is the momentum of the electron inside the solid
and k′ the momentum of the electron leaving the atom.
ρAT is the atomic density of the solid. V0 is the uniform
background potential of the solid as defined in Section 2.1.
US is an arbitrary potential energy in which the effective
atom is placed to mimic the solid. US belongs necessarily
to [V0, 0]. For low density solids with large average inter-
atomic spacing such as amorphous carbon US ∼ 0. By
changing US, we have tested that the variation of the yield
with respect to QP is not sensitive to the fine details of
the atomic model embedding in the solid. In the following,
we refer the model that includes a CDW-EIS formalism
for both the valence and the 1s levels to as the “effective
atom model”.

4 Results and discussions

4.1 Effective atom model qualification

Before investigating the effects of increasing the projectile
charge QP , it is necessary to qualify the effective atom
model with respect to the dielectric model, which has
been widely used to model electron emission, and which
is known to give good results for weak perturbation when
compared to experiment [7–11,48]. Therefore we compare
in Figure 2 two energy differential spectra of primary elec-
trons ejected in backward direction for a 9.2 MeV proton
and for foil thickness of 4.0 µg/cm2. These spectra include
only the valence electron contribution. They were calcu-
lated with the dielectric formalism and with the effective
atom model in the energy range from −10 to 50 eV, where
differences between both models are expected to signifi-
cant. The energy is referenced with respect to the vacuum
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Fig. 2. Backward energy differential source term (primary
electron spectrum) for a 9.2 MeV/u proton. Only the valence
electron contribution is included.
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Fig. 3. Backward energy differential yield (emitted electron
spectrum) for a 9.2 MeV/u proton. The differential yield
includes both valence and 1s electron contributions. The 1s
electron contribution including Auger electrons is shown sepa-
rately.

level. Comparing both theoretical models, we first remark
that no primary electron is produced under the vacuum
level when the atomic approximation is used. This be-
haviour is due to our neglect of the excitation mechanism
and to the energy definition equation (8) that we used in
the atomic model to calculate the source term. Second,
we notice the structure around 10 eV for the dielectric
formalism. This energy corresponds approximately to the
middle of the valence band (∼15 eV) shifted by the aver-
age plasmon energy (∼25 eV). It characterises the damp-
ing of plasmons and hence does not appear in the atomic
approach where no collective effects are included. Finally,
for a similar stopping power (see Tab. 1 for H+), the en-
ergy distribution is different for the atomic model and
the dielectric formalism because of the collective excita-
tions, which suppress low energy transfer to the benefits
of higher energy transfer in the energy range 0 to 50 eV.
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Table 1. Absolute electron yields and stopping powers for experiment, atomic model and dielectric model. Tabulated stopping
power values were taken from references [50,51] for protons. a The experimental yield for H+ is extrapolated from experimental
results at various lower energies [54,55] by scaling with the stopping power. b The experimental yield for S16+ is extrapolated
from experimental results at 8.7 MeV/u by scaling with the stopping power.

Ion γB dE/dx (keV/nm)

Exp. Atomic Diel. Tab. Atomic Diel.

H+ 0.12a 8.14 × 10−2 8.34 × 10−2 8.66 × 10−3 8.53 × 10−3 8.13 × 10−3

C6+ 3.6 2.83 3.00 3.07 × 10−1 3.07 × 10−1 2.94 × 10−1

S16+ 24.6b - - 1.94 - -

Ca20+ 32.1 28.3 31.8 2.88 3.23 3.18

Ni27+ 45.0 49.5 57.0 5.13 5.71 5.72

Mo39+ 82.3 96.3 117 9.91 11.33 11.66

In Figure 3, energy differential yields of backward emit-
ted electrons for 9.2 MeV protons are presented for the
atomic model and the dielectric formalism. The calcula-
tion was also performed for 4.0 µg/cm2 foil thickness and
includes both the valence and the 1s shell contributions. In
contrast with the corresponding primary spectra shown in
Figure 2, the curves are similar both in shape and in inten-
sity. This result illustrates how much the electron trans-
port and the potential barrier of the foil modify the pri-
mary spectra. In particular, the structure around 10 eV in
the primary spectrum obtained with the dielectric model
and due to collective effects is strongly modified, and the
low energy peak in the primary spectrum obtained for
atomic formalism is almost suppressed because the very
low energy electron have a very low chance to escape the
foil. The similarity of the curves in Figure 3 shows that
the atomic model works quite well (as well as the dielectric
model for H+) in describing the details electron emission.

4.2 Total yield and stopping power

The experimental results for electron yields were obtained
at the medium energy facility at GANIL for a set of
isotachic ions (vP = 19 a.u.). The experiment was per-
formed under ultra high vacuum (UHV) conditions with
200 µg/cm2 thick amorphous carbon targets on copper
backing. They were sputter cleaned with a 500 eV Ar+ ion
beam. The experimental apparatus and procedure were
described previously [1,46]. The error bars for the absolute
total yields are of the order of 10%. The stopping power
values were obtained from several compilations of experi-
mental values [50–52]. The agreement between the differ-
ent compilations is excellent in this energy range. The rel-
ative error bars provided by the authors are within 5% [50]
or less for protons [51,52]. These data are strictly valid for
projectiles at charge equilibrium, i.e. when the projectile
charge state distribution becomes stationary [53], while in
our calculations we simply consider a bare ion with the
corresponding average charge. Nevertheless, the incoming
projectile charge is very close to the equilibrium charge
state and the stopping power deviation is found to be less
than 2% for Mo39+ ions for which the equilibrium charge
state is estimated to be 39.2 [1,53]. The absolute experi-
mental and theoretical results are summarised in Table 1.

The experimental γB-value for H+ is extrapolated from
data at 1 MeV [54] and data at 6.2 MeV [55] by means of
a linear scaling with the stopping power, which has been
shown to be valid for protons in this energy range [48].

For the whole range of charge presented here, the ex-
perimental and theoretical values are comparable in mag-
nitude. For protons, for which perturbative theories are
expected to give better results, the atomic model gives re-
sults comparable with the dielectric formalism. For both
theories, Se underestimate the tabulated value by 5% or
less, and γB underestimates its experimental counterpart
by a factor 1.5 approximately. This difference is quite
likely due to the description of low energy electron trans-
port based on perturbation theory that underestimates
the electron mean free path. The agreement between tab-
ulated and calculated stopping power confirms this inter-
pretation.

In order to see the variation with the projectile
charge QP better, and since the data for protons were
obtained indirectly from separate experiments, we define
the normalised yield Rγ with respect to the C6+ projectile:

Rγ(QP ) =
62γB(XQP +)
Q2

P γB(C6+)
· (10)

In the same way, we define the normalised stopping power
RdE/dx as:

RdE/dx(QP ) =
62 dE/dx (XQP +)
Q2

P dE/dx (C6+)
· (11)

Rγ and RdE/dx are presented in Figures 4 and 5 re-
spectively, for experiment and for both of the theoretical
models. The slight decrease obtained with the dielectric
formalism in Figures 4 and 5 comes from the use of CDW-
EIS cross-sections describing the interaction of the projec-
tile with the target 1s-electrons. The atomic model repro-
duces both Rγ and RdE/dx in a better agreement with
experiments than the dielectric model does. It is inter-
esting to note that, either experimentally or theoretically,
the decrease of Rγ is more pronounced than the decrease
of RdE/dx. This shows that the electron transport mag-
nifies the saturation effect already observed for the pri-
mary interaction via the stopping power. This is consis-
tent with the fact that low energy electron production
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Fig. 5. Tabulated and calculated normalized electronic stop-
ping power RSe versus the projectile charge QP (see Tab. 1).

saturates much more than the high energy electron pro-
duction, as we shall see in the next section. Indeed, in
calculating

dE

dx
= v−1

P

∫
dω

dS

dω
ω,

where v−1
P dS/dω is the differential energy loss spectrum

per unit length with respect to energy loss, both backward
and forward contributions are included and more emphasis
is put on the high energy side of the spectrum, while the
simulation shows that this high energy part contributes
less to the backward yield.

In spite of the improvement brought by the atomic
modelling of primary interaction, a systematic overesti-

mation of the experimental ratios remains. It increases
with the projectile charge, up to 23% for Rγ(39+) and up
to 11% for RdE/dx(39+). Since the quantitative variation
of the stopping power ratio with respect to the charge
is not completely reproduced, we can conclude that the
modelling of the source term could be improved further.
We emphasize that a better electron transport calcula-
tion for the cascade generation would not affect the stop-
ping power variation and hence cannot explain this dif-
ference. A clue for understanding where this difference
comes from, can be obtained by the following considera-
tion. Since CDW-EIS theory reproduces accurately the ex-
perimental data for light target atoms such as He [41], and
since for carbon the 1s level contribution to γB amounts
to 25% for protons (including Auger electrons and their
cascades) it is conceivable that the 1s ionisation is over-
estimated by CDW-EIS theory for large projectile charge.
Recent measurements of Auger electron spectra [17] giv-
ing access to 1s ionisation probability for carbon foils are
in favour of this interpretation.

4.3 Forward/backward differential energy spectra

From energy differential spectra we can obtain more infor-
mation about the observed reduction effect with respect
to Q2

P scaling. In particular, we will show in this section
that this effect takes place on the low energy side of the
spectrum for backward and forward-emitted electrons.

In order to point out the asymmetry between backward
and forward-emitted low energy electrons, we calculated
energy differential spectra with a 4.0 µg/cm2 thick foil.
For such a thickness and at 9.2 MeV/u, the cascades of
low energy electrons are almost fully developed, but the
fast electron cascades have hardly influenced the forward
spectrum yet [48]. Figure 6 presents the normalised energy
differential source ratio for molybdenum (QP = 39):

SspB,spF (39, E) =
1

392

dSB,F

dE (39+)
dSB,F

dE (1+)
(12)

for backward and forward-ejected electrons obtained with
the atomic model. SspB and SspF are represented by
dashed lines in Figure 6. Both curves include the valence
and 1s contribution to the source, and they correspond
to what would be typically observed for collisions with
atoms. The thin dotted line stands for any theory scal-
ing as Q2

P and does not exhibit any characteristic feature.
In contrast, we can observe several features characterising
the normalised source ratio for CDW-EIS modelling. The
most significant of them is the strong asymmetry between
backward and forward direction due to the very strong
perturbation induced by the Mo39+ projectile. The nor-
malised backward source term SspB is about two times
lower than its forward counterpart SspF . This difference
is even larger on the high-energy side where SspB de-
creases down to 0.3. This difference in magnitude between
SspF and SspB illustrates nicely the “forward focusing ef-
fect” [14], that is, when QP increases, SspB decreases more
than SspF .
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We can distinguish 4 different energy regions in which
several features appear due to the enhancement of QP .
(i) Above 280 eV, the saturation does not affect seri-
ously the fast electron emission in the forward direction
and SspF ≈ 1. A closer inspection shows that the respec-
tive forward contribution at 280 eV of the 1s and valence
levels are 3.6 × 10−3:1.9 × 10−2 for proton and 4.2:31.3
for Mo39+. At 500 eV the respective contributions are:
2.2 × 10−3:1.0 × 10−2 for proton and 2.9:15.1 for Mo39+.
Therefore, in this region, SspF is dominated by electrons
ejected from valence band, for which the cross-section
scales approximately as Q2

P . In contrast, SspB decreases
above 280 eV. The reason is the increasing 1s contribu-
tion to SspB together with the stronger saturation of the
1s electron ejection cross-section with respect to the va-
lence cross-section. (ii) We observe a strong dip around
260 eV in the forward direction and a shallow maximum
in the backward direction. The half-width of this features
is equal to the energy width of the valence band (20 eV).
The minimum of the dip in forward direction and the max-
imum of the bump in the backward direction reach almost
the same value because, at this energy, the spectrum is
dominated by the isotropic KVV Auger electron emission.
Since the fluorescence yield of the carbon 1s level is ex-
tremely small, the KVV Auger electron production cross-
section is almost equal to the 1s ionisation cross-section.
Therefore in this region, the source ratio is approximately
equal to the normalised total 1s inverse mean free path
ratio (see point a in Fig. 6). Aside of this narrow Auger en-
ergy area, the spectrum is dominated by the valence con-
tribution. Since the valence electron ejection cross-section

in forward direction does not saturate in this region, SspF

is higher, and consequently the Auger peak corresponds
to a dip in the forward source ratio. At the opposite, the
valence electron ejection cross-section in backward direc-
tion saturates slightly more than the total 1s cross-section,
and consequently the Auger peak corresponds to a shal-
low peak in the backward source ratio. (iii) In the region
between 20 and 240 eV, SspF reaches values larger than 1.
This means that the projectile focuses the electron in the
forward direction with an efficiency that increases with the
projectile charge as observed experimentally [14]. Hence,
this part of the source energy spectrum behaves in an op-
posite way than a saturation effect. (iv) Finally, between
0 and 20 eV, we observe a strong reduction of the low-
energy electron emission in both forward and backward
directions. This relative reduction plays an important role
since it occurs in an energy range where the contribution
to the emitted spectrum is large.

In order to observe the contribution of the trans-
port process, we have also plotted in Figure 6 the nor-
malised emitted-electron spectra RspB,spF defined in the
same way:

RspB,spF (39, E) =
1

392

dγB,F

dE (39+)
dγB,F

dE (1+)
· (13)

RspB and RspF are represented by continuous lines in Fig-
ure 6. The jitter is due to MC statistics. We observe that
the transport tends to attenuate the asymmetry between
backward and forward direction. The general behaviour is
to enhance RspB and to lower RspF by mixing the contri-
bution of SspF and SspB to produce either RspF or RspB .
In contrast to the source ratios SspF and SspB, RspF and
RspB are parallel to each other above 50 eV.

Considering the 4 energy regions defined above, we can
analyse the significance of transport with respect to the
projectile charge variation. (i) Above 280 eV, RspF is al-
most identical to SspF . This is because RspF results from
the cascades of primary electron emitted in the forward
direction, which are therefore included in SspF at higher
energy, where almost no saturation is observed. In con-
trast, RspB is much higher than SspB , revealing the large
contribution of forward primary electron included in SspF

to the backward emission, mainly because of backscatter-
ing of these forward primary electron. (ii) The forward
Auger dip and backward Auger bump are both trans-
formed into a step-like feature between 260 and 280 eV.
There is some track of the forward dip in RspF , but the
bump in RspB has been transformed into a step. This is,
again, because of the large contribution of the forward pri-
mary emission to backward emission. (iii) Between 20 and
260 eV, RspF is lower than in the region above 280 eV.
The same holds true for RspB . The explanation comes
from the transport of the Auger electrons that contribute
significantly in this energy range, and which spread the
Auger dip in SspF toward lower energy. A detailed anal-
ysis of the Auger contribution to the step-like feature is
shown in Figure 7. We present, here, a calculation with
the full primary spectrum (Auger on) and a calculation in
which the Auger electrons were not included (Auger off).
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This figure shows clearly that the primary Auger electron
is responsible for the step-like feature in RspF and RspB .
The step-like shape of RspB around the Auger energy is
qualitatively in excellent agreement with the observations
made independently for aluminium, copper and gold [15]
and more recently for carbon [17]. This effect discussed
previously in the literature in terms of track potential [16]
effect is nothing but the different behaviour of the total 1s
ionisation probability and of the energy differential ionisa-
tion probability with respect to the projectile charge QP ,
as discussed for the source term. (iv) Finally, below 20 eV,
RspF and RspB have kept the behaviour of SspF and SspB ,
i.e. they increase when the the energy increase in quali-
tative agreement with experiment [16,17]. This energy re-
gion contributes significantly to the saturation effect ob-
served for γB in Figure 4.

The asymmetry in the evolution of RspB and RspF

with respect to the projectile charge, as reported in Fig-
ure 6, is large enough to be observed experimentally. We
suggest performing an experimental determination of both
RspB and RspF around the Auger energy, for swift pro-
jectiles and very thin targets to avoid transport effects
as much as possible. Such an experimental measurement
would bring one more argument in favour or against the
existence of a two-centre effect in solids.

5 Conclusion

We studied the dependence of electron emission on pro-
jectile charge QP for swift ions at a fixed velocity vP =
19 a.u. We reminded that the linear response modelisa-
tion of the projectile target interaction fails to reproduce
both the backward yield γB and stopping power variations
with QP . We then modelised this interaction with the help
of an atomic model within the CDW-EIS formalism, which
reproduces the QP saturation effect observed in ion-atom
collision. This latter model can reproduce to some extent
the energy levels of the solid and it gives better results
concerning various aspects of the electron emission. The
fine details (such as the hybridisation) play a little role in

changing the absolute yield γB and stopping power values,
but the variations with QP are rather insensitive to it.

The main result of our study is that the relative varia-
tion of both the yield and the stopping power with the pro-
jectile charge QP is much better reproduced with our effec-
tive atom model within CDW-EIS formalism than within
the linear response theory. Let us note that both theories
agree with each other for proton yield and they reproduce
equally well the stopping power for protons. The anal-
ysis of energy differential source shows a large forward-
backward asymmetry of the source term, due to the larger
charge of the projectile. The transport reduces signifi-
cantly this asymmetry, even for target as thin as 4 µg/cm2,
but it is still clearly observable. Our calculations allow a
qualitative analysis of the experimental results obtained
for several materials by various authors. Indeed, an at-
tractive point of this model is to describe, within a unique
approach, not only the yield evolution with QP but also
more refined quantities such as the QP -dependence of the
energy differential spectra ratio. For backward electron
emission, the shape of the energy differential spectra ratio
around a core excitation threshold is due to the difference
in the saturation between the Auger yield, which follow
the total core excitation mean free path, and the differen-
tial yield around this excitation threshold, which follows
the energy differential valence mean free path. Finally, a
measurement of the forward and backward energy differ-
ential spectra would allow performing a sensitive test of
our atomic modelisation.

Refining the comparison of our theory and experimen-
tal data, some differences still exist between the theoret-
ical γB dependence in QP and its experimental counter-
part. Since the same observation is done for the stopping
power, it remains a primary effect that is not accounted
for by our model. Such a primary effect could be due to
a specific solid state effect such as the dynamical screen-
ing, which is not included in our atomic modelisation. Al-
ternatively, the calculated saturation of the 1s ionisation
cross-section could be too weak for solid carbon as indi-
cated by preliminary experimental results. Because of the
transport, this difference would be somewhat magnified,
and it could be responsible for the observed difference be-
tween calculation and experiment.

In conclusion, we presented a novel numerical descrip-
tion of ion induced electron emission from solids, based
on an atomic description of the ionisation process that al-
lows to go beyond the linear response approximation. This
theoretical approach allowed, for the first time, to under-
stand the shape of the differential energy spectra ratio
for two projectile different charge at the same velocity.
The comparison with experimental yields shows that this
approach allows a better description than linear models
based on linear response theory.
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